Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex.
نویسندگان
چکیده
In rat visual cortex, forward and feedback interareal pathways innervate both pyramidal and gamma-aminobutyric acid (GABA)ergic (Johnson and Burkhalter [1996] J. Comp. Neurol. 368:383-398). GABAergic neurons consist of different cell types of which the largest group expresses parvalbumin (PV; Gonchar and Burkhalter [1997] Cereb. Cortex 4:347-358). Here, we report that PV neurons in layers 2/3 are synaptic targets of forward and feedback projections between area 17 and the lateromedial area (LM) of rat visual cortex. In both forward and feedback pathways, approximately 90% of axon terminals in layer 2/3 labeled by tracing with biotinylated dextran amine formed synapses with PV-negative profiles. In both pathways, most of these profiles resembled dendritic spines. Although there were no differences in the innervation of PV-negative targets, the two pathways differed in the innervation of PV-positive neurons. In each pathway, approximately 10% of terminals formed synapses with PV-positive profiles. However, in the forward pathway, the size of the contacted PV-positive profiles was larger than in the feedback pathway. Moreover, in the forward pathway, axon terminals on PV-positive profiles were larger, contained more mitochondria and docked synaptic vesicles than feedback synapses on PV neurons. Our results show that PV neurons provide a major target for area 17 <-> LM forward and feedback pathways terminating in upper layers. In each pathway, the proportion of axons contacting PV neurons is similar. However, both pathways differ in the subcellular localization and morphology of synapses on PV neurons. These asymmetries may contribute to the inequality in the strength of disynaptic inhibition evoked by forward and feedback inputs (Shao and Burkhalter [1996] J. Neurosci. 16:7353-7365).
منابع مشابه
Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex.
Mouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic int...
متن کاملDistinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.
Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that exp...
متن کاملMicrocircuitry of forward and feedback connections within rat visual cortex.
Visual cortex in mammals is composed of many distinct areas that are linked by reciprocal connections to form a multilevel hierarchy. Ascending information is sent via forward connections from lower to higher areas and is thought to contribute to the emergence of increasingly complex receptive field properties at higher levels. Descending signals are transmitted via feedback connections from hi...
متن کاملRearrangement of synaptic connections with inhibitory neurons in developing mouse visual cortex.
Cortical inhibition is determined in part by the organization of synaptic inputs to gamma-aminobutyric acidergic (GABAergic) neurons. In adult rat visual cortex, feedforward (FF) and feedback (FB) connections that link lower with higher areas provide approximately 10% of inputs to parvalbumin (PV)-expressing GABAergic neurons and approximately 90% to non-GABAergic cells (Gonchar and Burkhalter ...
متن کاملRecruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas
Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 406 3 شماره
صفحات -
تاریخ انتشار 1999